Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Oxalate complexes of the (η^{6}-p-cymene)ruthenium (II) fragment: μ-oxalato- $\kappa^{2} O^{1}, O^{2}: \kappa^{2} O^{1^{\prime}}, O^{2^{\prime}}-\operatorname{bis}\left[\left(\eta^{6}-\right.\right.$ p-cymene)(triphenylphosphine- κP)ruthenium(II)] bis(tetrafluoroborate) and (η^{6} - p-cymene)(oxalato- $\kappa^{2} O, O^{\prime}$)-(pyridine-3,5-dicarboxylic acid- κN)ruthenium(II)

Sophie H. Dale ${ }^{\text {a }}$ and Mark R. J. Elsegood ${ }^{\text {b }}$ *

${ }^{\text {a }}$ School of Natural Sciences (Chemistry), Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England, and ${ }^{\mathbf{b}}$ Chemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

Received 26 January 2006
Accepted 1 March 2006
Online 31 March 2006
The crystal structure of dimeric μ-oxalato-bis $\left[\left(\eta^{6}-p\right.\right.$-cymene $)$ (triphenylphosphine)ruthenium(II)] bis(tetrafluoroborate), $\left[\mathrm{Ru}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{14}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$, has the cation lying on an inversion centre. The complex demonstrates the trans bond-weakening influence, with the longest $\mathrm{Ru}-\mathrm{C}\left(\eta^{6}-p\right.$ cymene) bonds in the complex lying trans to the phosphine group. The related mononuclear species (η^{6} - p-cymene)-(oxalato)(pyridine-3,5-dicarboxylic acid)ruthenium(II), [Ru$\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{14}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}\right)$], crystallizes as hydrogen-bonded tapes linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Using a synthetic method first introduced by Winkhaus \& Singer (1967) and later adapted by others (Iwata \& Ogata, 1973; Bennett \& Smith, 1974; Bennett et al., 1982), the reaction of cyclohexa-1,3-dienes with $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ via a reductive dehydrogenation reaction in a mixed $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ solvent affords air-stable $\left[\mathrm{RuCl}_{2}\left(\eta^{6} \text {-arene }\right)\right]_{2}$ chloro-bridged dimer complexes. These dimeric starting materials can be reacted with a wide variety of ligands, resulting in mononuclear halfsandwich 'piano-stool' complexes (Bennett \& Smith, 1974; Maitlis, 1981). Such (η^{6}-arene)ruthenium complexes have been shown to have both stoichiometric (Pigge \& Coniglio, 2001) and catalytic (Ogo et al., 2002; Hafner et al., 1997; Akiyama \& Kobayashi, 2002) applications in organic chemistry. More recently, (η^{6}-arene)ruthenium complexes have been shown to exhibit antibacterial, antiviral and anticancer properties (Allardyce et al., 2003; Morris et al., 2001; Wang et al., 2002).

Yan and co-workers have investigated the synthesis of dimeric (η^{6}-arene) ruthenium complexes. The oxalate $\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right)$ ligand replaces the bridging Cl^{-}ligands upon reaction with $\left[\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right]_{2}$, producing the dimeric compound

(i) $\mathrm{AgBF}_{4}(-2 \mathrm{AgCI})$ (ii) PPh_{3}

(I)

$\left\{\mathrm{Ru}\left(\eta^{6}-p \text {-cymene) }\right\}_{2}\right.$ (μ-oxalato) Cl_{2} (Yan et al., 1997). The Cl^{-} anions of this compound can be displaced by PPh_{3}, producing the cation $\left[\left\{\mathrm{Ru}\left(\eta^{6}-p \text {-cymene }\right)\right\}_{2}(\mu \text {-oxalato })\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}$, and may also be removed upon reaction with Ag^{+}salts before addition of a monodentate ligand. This latter reaction was used to synthesize the 'molecular box', $\left[\left\{\mathrm{Ru}\left(\eta^{6}-p \text {-cymene }\right)\right\}_{4}{ }^{-}\right.$ $\left.(\mu \text {-oxalato })_{2}\left(\mu-4,4^{\prime} \text {-bipy }\right)_{2}\right]^{4+}$. Our investigations have continued from this work, with the aim of introducing ligands bearing hydrogen-bonding functionality to the $\left[\left\{\mathrm{Ru}\left(\eta^{6}\right.\right.\right.$ arene) $\}_{2}(\mu$-oxalate $\left.)\right]^{2+}$ fragment. Initial reactions introduced PPh_{3} to the system through the prior removal of the Cl^{-} anions using Ag^{+}salts, allowing the crystallization of the $\left[\left\{\mathrm{Ru}\left(\eta^{6}-p \text {-cymene }\right)\right\}_{2}(\mu \text {-oxalato })\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}$ cation as its $\mathrm{BF}_{4}{ }^{-}$ salt, (I). [Yan et al. (1997) synthesized the cation as its trifluoromethanesulfonate salt, but did not crystallographically characterize the compound.] The reaction of $\left\{\mathrm{Ru}\left(\eta^{6}-p \text {-cymene }\right)\right\}_{2}$ (μ-oxalato) Cl_{2} with Ag^{+}, followed by addition of the monodentate ligand pyridine-3,5-dicarboxylic acid, resulted in an ambiguous mixture of compounds (spectroscopic data were inconclusive). However, one crystal
was grown from the recrystallization of the mixture, from which the structure of $\mathrm{Ru}\left(\eta^{6}-p\right.$-cymene)(oxalato)(pyridine-3,5-dicarboxylic acid), (II), was determined, rather than the intended dimeric compound $\left[\left\{\mathrm{Ru}\left(\eta^{6}-p \text {-cymene }\right)\right\}_{2}\right.$ (μ-oxalato)-(pyridine-3,5-dicarboxylic acid) $)_{2}\left(\mathrm{BF}_{4}\right)_{2}$.

Figure 1
A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the minor disorder component have been omitted for clarity. The η^{6}-binding mode of the p-cymene ligands is represented by heavy dashed lines between the Ru atoms and the centroids of the aromatic ring. [Symmetry code: (i) $-x+1,-y,-z+1$.]

Figure 2
A view of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those of hydroxyl groups, have been omitted for clarity. The η^{6}-binding mode of the p-cymene ligand is represented by a heavy dashed line between the Ru atom and the centroid of the aromatic ring.

Compound (I), $\left[\left\{\mathrm{Ru}\left(\eta^{6}-p \text {-cymene }\right)\right\}_{2}(\mu\right.$-oxalato $\left.)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $\left(\mathrm{BF}_{4}\right)_{2}$, has the cation positioned on an inversion centre (Fig. 1). The compound represents only the fifth oxalatebridged (η^{6}-arene)ruthenium complex to be structurally characterized to date. The original four complexes were characterized by Yan et al. (1997), with Cl^{-}(two conformational isomers), methanol and 4,4'-bipyridine ligands filling the remaining coordination sites of the $\mathrm{Ru}^{\mathrm{II}}$ ions.

The geometry of the cation in (I) is summarized in Table 1. Table 5 shows the results of a search of the Cambridge Structural Database (CSD; Version 5.27 plus one update, January 2006; Allen, 2002) for (oxalato)ruthenium complexes in the presence and absence of η^{6}-arene ligands. The bond lengths within the oxalate ligand are in good agreement with the results of the CSD survey, with little difference observed in the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond lengths whether an η^{6} ligand is present or not. $\mathrm{Ru}-\mathrm{O}$ bond lengths appear to be slightly shorter in the presence of an η^{6}-arene ligand, and the O -$\mathrm{Ru}-\mathrm{O}$ angle slightly narrower, whereas in the case of (I), the $\mathrm{Ru}-\mathrm{O}$ bond lengths are longer than the averages in Table 5 and the $\mathrm{O}-\mathrm{Ru}-\mathrm{O}$ angle narrower still. This is presumably due to the steric and electronic effects of the PPh_{3} ligand. The average $\mathrm{Ru}-\mathrm{P}$ bond length from $60 \mathrm{Ru}\left(\eta^{6}\right.$-arene $)\left(\mathrm{PPh}_{3}\right)$ structures in the CSD is 2.35 (3) \AA (range $2.262-2.404 \AA$), showing good agreement with that observed in (I).

The Ru-C bond lengths in (I) [2.184 (3)-2.256 (3) A] are average-to-long compared with the search statistics (Table 5). Complexes containing η^{6}-arene and phosphine ligands have been shown to demonstrate the trans bond-weakening influence, in which the $\mathrm{Ru}-\mathrm{C}$ bonds positioned trans to the

Figure 3
A packing plot, showing the close-packing of two hydrogen-bonded tapes of (II), viewed along the crystallographic c axis (a axis horizontal). Hydrogen bonds are shown as thin dashed lines. The η^{6}-binding mode of the p-cymene ligands is represented by heavy dashed lines between the Ru atoms and the centroids of the aromatic ring. [Symmetry codes: (i) $-x,-y,-z$; (ii) $-x+1,-y,-z+1$.]
phosphine group are elongated with respect to the others (Bennett et al., 1972; Elsegood \& Tocher, 1995). The trans influence is observed in compound (I), where atoms C2 and C 3 , having the longest $\mathrm{Ru}-\mathrm{C}$ bond lengths within the η^{6} coordination of the arene ligand, lie trans to the phosphine ligand. The distance between the $\mathrm{Ru}^{\mathrm{II}}$ ion and the leastsquares plane of the p-cymene aromatic ring is 1.6971 (13) \AA. The cations and anions are linked together into a threedimensional structure through a series of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (Table 2).

Compound (II), $\quad \mathrm{Ru}\left(\eta^{6}-p\right.$-cymene)(oxalato)(pyridine-3,5-dicarboxylic acid), crystallizes with the asymmetric unit comprising one formula unit (Fig. 2). The compound represents only the second $\mathrm{Ru}\left(\eta^{6}\right.$-arene)(oxalato) L complex (L is a monodentate ligand) to be structurally characterized to date, the other being an $\eta^{6}-p$-cymene- PPh_{3} complex (Yan et al., 1997). The $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ bond lengths of the oxalate ligand show good agreement with those observed in (oxalato)ruthenium complexes in both the presence and absence of an η^{6}-arene ligand. The data shown in Table 5 indicate that the presence of an η^{6}-arene narrows the $\mathrm{O}-\mathrm{Ru}-\mathrm{O}$ angle, as observed in oxalate dimeric complexes, whereas in the case of monomeric complexes, the presence of an η^{6}-arene ligand increases the $\mathrm{Ru}-\mathrm{O}$ bond lengths. The geometry of compound (II) therefore shows closer agreement with that of a monomeric complex than the dimeric species. However, it is unclear why the monomeric species has formed. The average $\mathrm{Ru}-\mathrm{N}($ pyridyl $)$ bond length from $119 \mathrm{Ru}\left(\eta^{6}\right.$-arene $)\left(\mathrm{PPh}_{3}\right)$ structures in the CSD is 2.12 (3) \AA (range 2.054-2.189 \AA), showing good agreement with that observed in (II). The RuC bond lengths are in the range 2.164 (3)-2.218 (3) A., with the longest bond lying trans to the pyridyl N atom. The distance between the $\mathrm{Ru}^{\mathrm{II}}$ ion and the least-squares plane of the p cymene aromatic ring is 1.6650 (11) \AA.

The presence of the two carboxylic acid groups on opposite sides of the pyridine ring in (II) allows the formation of hydrogen-bonded tapes, propagating in the [101] direction (Table 4 and Fig. 3). Each $\mathrm{CO}_{2} \mathrm{H}$ group forms an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond to a terminal O atom of an oxalate ligand in a neighbouring complex. Close packing of the chains is aided by the alternation of the bulky p-cymene ligands above and below the hydrogen-bonded tapes.

We are continuing our work towards the synthesis and structural characterization of dimeric $\left[\left\{\mathrm{Ru}\left(\eta^{6} \text { - } p \text {-cymene }\right)\right\}_{2}(\mu\right.$ oxalato) $\left.L_{2}\right]^{n+}$ complexes containing monodentate ligands L bearing hydrogen-bonding groups, with the aim of creating extended supramolecular arrays.

Experimental

$\left[\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right]_{2}$ was prepared from $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ according to the literature method of Bennett et al. (1982). $\left\{\operatorname{Ru}\left(\eta^{6}-p \text {-cymene) }\right\}_{2}(\mu\right.$ oxalato) Cl_{2} was prepared using a method adapted from the literature (Yan et al., 1997). To a stirred solution of $\left[\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right]_{2}$ ($300 \mathrm{mg}, 0.490 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{ml})$ at room temperature was added sodium oxalate ($66 \mathrm{mg}, 0.49 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The resulting biphasic mixture was stirred vigorously for 4 h ,
producing a red-to-yellow colour change. The organic layer was separated and the aqueous layer was extracted with dichloromethane $(3 \times 10 \mathrm{ml})$. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to dryness to produce an orange solid ($280 \mathrm{mg}, 91 \%$). Spectroscopic data for $\left\{\mathrm{Ru}\left(\eta^{6}-p \text {-cymene }\right)\right\}_{2}(\mu$-oxalato) Cl_{2} were identical to those determined previously (Yan et al., 1997).

For the preparation of compound (I), AgBF_{4} ($19 \mathrm{mg}, 0.098 \mathrm{mmol}$, 2 equivalents) was added to a stirred solution of $\left\{\mathrm{Ru}\left(\eta^{6}-p\right.\right.$ cymene) $\}_{2}\left(\mu\right.$-oxalato) $\mathrm{Cl}_{2}(30 \mathrm{mg}, 0.048 \mathrm{mmol})$ in acetone $(10 \mathrm{ml})$ at room temperature under N_{2}. After stirring for 18 h , the AgCl precipitate was removed by filtration through a pad of Celite and $\mathrm{PPh}_{3}(25 \mathrm{mg}, 0.095 \mathrm{mmol}, 2$ equivalents) was added to the resulting yellow solution. Following further stirring for 6 h at room temperature, the yellow-orange solution was evaporated to dryness, yielding an orange solid ($51 \mathrm{mg}, 91 \%$). The sample was observed to decompose at temperatures in excess of 503 K . X-ray quality crystals of (I) were grown by the slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapour into an $\mathrm{MeOH}-$ dichloromethane (approximately 1:1) solution of (I). IR ($\mathrm{KBr}, \nu_{\text {max }}$, cm^{-1}): 3077 and $3062(\mathrm{Ar} \mathrm{C}-\mathrm{H}), 2967,2926$ and $2863\left(s p^{3} \mathrm{C}-\mathrm{H}\right)$, $1621\left(\mathrm{CO}_{2}^{-}\right), 1482,1471$ and $1438\left(s p^{3} \mathrm{C}-\mathrm{H}\right), 1082$ and $1060\left(\mathrm{BF}_{4}^{-}\right)$, 910, 862, 754, $698(\mathrm{Ar} \mathrm{C}-\mathrm{H}), 531,509$ and 488. Other spectroscopic data were found to be identical to those of the previously reported trifluoromethanesulfonate salt (Yan et al., 1997).

For the preparation of compound (II), $\mathrm{AgBF}_{4}(46 \mathrm{mg}, 0.24 \mathrm{mmol}, 2$ equivalents) was added to a stirred solution of $\left\{\mathrm{Ru}\left(\eta^{6}-p-\right.\right.$ cymene) $\}_{2}\left(\mu\right.$-oxalato) Cl_{2} ($75 \mathrm{mg}, 0.12 \mathrm{mmol}$) in acetone (10 ml) at room temperature under N_{2}. After stirring for 6 h , the AgCl precipitate was removed by filtration through a pad of Celite and pyridine3,5 -dicarboxylic acid ($40 \mathrm{mg}, 0.24 \mathrm{mmol}, 2$ equivalents) was added to the resulting yellow solution. After stirring for a further 18 h at room temperature, the yellow-orange solution was evaporated to dryness. One X-ray quality crystal of (II) was grown by the slow evaporation of a methanolic solution of the crude reaction mixture.

Compound (I)

Crystal data

$\left[\mathrm{Ru}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{14}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$ -

$$
\left(\mathrm{BF}_{4}\right)_{2}
$$

$M_{r}=1256.74$
Monoclinic, $P 2_{1} / c$
$a=9.4503$ (6) A
$b=16.8493$ (10) \AA
$c=16.8539$ (10) \AA
$\beta=95.815$ (2) ${ }^{\circ}$
$V=2669.9(3) \AA^{3}$
$Z=2$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer ω rotation scans with narrow frames Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.683, T_{\text {max }}=0.966$
22839 measured reflections
$D_{x}=1.563 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6070 reflections
$\theta=2.4-28.0^{\circ}$
$\mu=0.70 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Needle, red
$0.59 \times 0.09 \times 0.05 \mathrm{~mm}$

> 6006 independent reflections
> 4296 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.050$
> $\theta_{\max }=27.5^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-21 \rightarrow 20$
> $l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.082$
$S=1.03$
6006 reflections
374 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (I).

Ru1-C1	$2.184(3)$	Ru1-P1	$2.3713(10)$
Ru1-C2	$2.238(4)$	Ru1-O1	$2.137(2)$
Ru1-C3	$2.256(3)$	Ru1-O2	$2.131(2)$
Ru1-C4	$2.204(3)$	O1-C29	$1.252(4)$
Ru1-C5	$2.187(3)$	O2-C29	$1.258(4)$
Ru1-C6	$2.185(3)$	C29-C29	$1.530(6)$
P1-Ru1-O1	$91.69(7)$	O1-Ru1-O2	$77.16(8)$
P1-Ru1-O2	$87.34(7)$		

Symmetry code: (i) $-x+1,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C13-H13 $\cdots \mathrm{F}^{\mathrm{iii}}$	0.95	2.56	$3.354(7)$	141
C20-H20 $\cdots \mathrm{F}^{\mathrm{iii}}$	0.95	2.87	$3.481(10)$	124
C21-H21 $\mathrm{F}^{\mathrm{iii}}$	0.95	2.45	$3.358(5)$	159
C24-H24 $\cdots \mathrm{F} 2$	0.95	2.52	$3.305(8)$	140
C27-H27 $^{\mathrm{iv}}$	0.95	2.65	$3.479(5)$	146

Symmetry codes: (ii) $-x+1,-y+1,-z+1$; (iii) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $x,-y+\frac{1}{2}$, $z+\frac{1}{2}$.

Compound (II)

Crystal data

```
\(\left[\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{14}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\right]\)
\(M_{r}=490.42\)
Triclinic, \(P \overline{1}\)
\(a=7.8754\) (5) A
\(b=9.0005\) (6) \(\AA\)
\(c=13.6905\) (9) A
\(\alpha=98.647\) (2) \({ }^{\circ}\)
\(\beta=106.062(2)^{\circ}\)
\(\gamma=90.165(2)^{\circ}\)
\(V=920.92(10) \AA^{3}\)
\(Z=2\)
\(D_{x}=1.769 \mathrm{Mg} \mathrm{m}^{-3}\)
```


Data collection

Bruker SMART 1000 CCD area-	3166 reflections with $I>2 \sigma(I)$
detector diffractometer	$R_{\text {int }}=0.019$
ω rotation scans with narrow frames	$\theta_{\max }=26.0^{\circ}$
Absorption correction: multi-scan	$h=-9 \rightarrow 9$
$(S A D A B S ;$ Sheldrick, 2003 $)$	$k=-11 \rightarrow 11$
$T_{\min }=0.813, T_{\max }=0.931$	$l=-16 \rightarrow 16$

7288 measured reflections
3583 independent reflections
Table 3
Selected geometric parameters ($\AA^{\circ}{ }^{\circ}$) for (II).

$\mathrm{Ru} 1-\mathrm{C} 1$	$2.199(3)$	$\mathrm{C} 11-\mathrm{O} 1$	$1.278(3)$
$\mathrm{Ru} 1-\mathrm{C} 2$	$2.175(3)$	$\mathrm{C} 11-\mathrm{O} 2$	$1.229(3)$
$\mathrm{Ru} 2-\mathrm{C} 3$	$2.185(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.552(3)$
$\mathrm{Ru} 1-\mathrm{C} 4$	$2.218(3)$	$\mathrm{C} 12-\mathrm{O} 3$	$1.234(3)$
$\mathrm{Ru} 1-\mathrm{C} 5$	$2.165(3)$	$\mathrm{C} 12-\mathrm{O} 4$	$1.273(3)$
$\mathrm{Ru} 1-\mathrm{C} 6$	$2.164(3)$	$\mathrm{C} 18-\mathrm{O} 5$	$1.317(3)$
$\mathrm{Ru} 1-\mathrm{O} 1$	$2.0798(18)$	$\mathrm{C} 18-\mathrm{O} 6$	$1.205(3)$
$\mathrm{Ru} 1-\mathrm{O} 4$	$2.0827(17)$	$\mathrm{C} 19-\mathrm{O} 7$	$1.319(3)$
$\mathrm{Ru} 1-\mathrm{N} 1$	$2.131(2)$	$\mathrm{C} 19-\mathrm{O} 8$	$1.207(3)$
$\mathrm{O} 1-\mathrm{Ru} 1-\mathrm{O} 4$	$78.70(7)$	$\mathrm{O} 4-\mathrm{Ru} 1-\mathrm{N} 1$	$83.63(7)$
$\mathrm{O} 1-\mathrm{Ru} 1-\mathrm{N} 1$	$83.27(7)$		

Table 4
Hydrogen-bond geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {i }}$	0.84	1.76	2.563 (3)	160
$\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O}^{2 i}$	0.84	1.77	2.613 (2)	179

Table 5
Statistics $\left(\AA^{\circ},^{\circ}\right)$ from a CSD search for (oxalato)ruthenium complexes.

Fragment	$\mathrm{Ru}-\mathrm{O}$	$\mathrm{C}-\mathrm{O}$	$\mathrm{C}-\mathrm{C}(\mathrm{ox})$	$\mathrm{O}-\mathrm{Ru}-\mathrm{O}$	$\mathrm{Ru}-\mathrm{C}$
(i)	$2.097-2.182$	$1.24-1.27$	$1.532-1.551$	$77.0-79.8$	
	$[2.13(2)]$	$[1.255(8)]$	$[1.539(8)]$	$[78.6(11)]$	
(ii)	$2.100-2.142$	$1.240-1.271$	$1.518-1.555$	$77.8-78.2$	$2.137-2.191$
	$[2.126(11)]$	$[1.255(7)]$	$[1.535(15)]$	$[77.92(13)]$	$[2.168(16)]$
(iii)	$2.079-2.084$	$1.221-1.300$	1.549	78.6	$2.190-2.223$
(iv)	$[2.081(14)]$	$[1.25(4)]$			$[2.206(11)]$
	$2.011-2.108$	$1.162-1.389$	$1.500-1.572$	$78.4-83.6$	
	$[2.05(3)]$	$[1.25(4)]$	$[1.544(17)]$	$[80.8(12)]$	

Notes: search carried out using CSD (Version 5.27, plus one update, January 2006; Allen, 2002). Value ranges are shown, with mean averages in square brackets directly below. In the search for the $\mathrm{Ru}\left(\kappa^{2}\right.$-ox) fragment, the terminal O atoms of the oxalate ligands were restrained to be bonded to only one atom each. Fragments: (i) $\mathrm{Ru}\left(\kappa^{4}\right.$-ox) Ru , four structures; (ii) (Ar) $\mathrm{Ru}\left(\kappa^{4}-\mathrm{ox}\right) \mathrm{Ru}(\mathrm{Ar})$, four structures; (iii) $(\mathrm{Ar}) \mathrm{Ru}\left(\kappa^{2}-\mathrm{ox}\right)$, one structure; (iv) $\mathrm{Ru}\left(\kappa^{2}\right.$-ox), 13 structures. Structures containing η^{6}-arene ligands were omitted from the searches for $\mathrm{Ru}\left(\kappa^{4}\right.$-ox $) \mathrm{Ru}$ and $\mathrm{Ru}\left(\kappa^{2}\right.$-ox) fragments. Abbreviations: ox =oxalate and $\mathrm{Ar}=\eta^{6}$-arene.

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026
$$

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0239 P)^{2}\right.
$$

$$
w R\left(F^{2}\right)=0.061
$$

$$
S=1.07
$$

3583 reflections
267 parameters
H -atom parameters
constrained

All H atoms in title compounds (I) and (II) were placed in geometrically calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of $0.84 \AA . U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C})$ for aryl and methine H atoms, $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.5 U_{\text {eq }}(\mathrm{O})$ for carboxyl H atoms. The tetrafluoroborate anion in (I) was found to be disordered and was modelled as disordered over two sets of positions bearing one coincident $\mathrm{B}-\mathrm{F}$ bond [major refined occupancy $=65.0(17) \%$]. Restraints were applied to the anisotropic displacement parameters of the B and F atoms.

The data sets were truncated at $2 \theta=55^{\circ}$ for (I) and at $2 \theta=52^{\circ}$ for (II), as only statistically insignificant data were present above these limits.

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL and local programs.

The authors acknowledge the EPSRC for the provision of a studentship (SHD), and Johnson Matthey for the generous loan of $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$.

metal-organic compounds

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1886). Services for accessing these data are described at the back of the journal.

References

Akiyama, R. \& Kobayashi, S. (2002). Angew. Chem. Int. Ed. 41, 26022604.

Allardyce, C. S., Dyson, P. J., Ellis, D. J., Salter, P. A. \& Scopelliti, R. (2003). J. Organomet. Chem. 668, 35-42.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bennett, M. A., Huang, T.-N., Matheson, T. W. \& Smith, A. K. (1982). Inorg. Synth. 21, 74-78.
Bennett, M. A., Robertson, G. B. \& Smith, A. K. (1972). J. Organomet. Chem. 43, C41-C43.
Bennett, M. A. \& Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233241.

Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany

Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
Elsegood, M. R. J. \& Tocher, D. A. (1995). Polyhedron, 14, 3147-3156.
Hafner, A., van der Mühlebach, A. \& Schaaf, P. A. (1997). Angew. Chem. Int. Ed. Engl. 36, 2121-2124.
Iwata, R. \& Ogata, I. (1973). Tetrahedron, 29, 2753-2758.
Maitlis, P. M. (1981). Chem. Soc. Rev. 10, 1-48.
Morris, R. E., Aird, R. E., del Socorro Murdoch, P., Chen, H. M., Cummings, J., Hughes, N. D., Parsons, S., Parkin, A., Boyd, G., Jodrell, D. I. \& Sadler, P. J. (2001). J. Med. Chem. 44, 3616-3621.

Ogo, S., Abura, R. \& Watanabe, Y. (2002). Organometallics, 21, 2964-2969.
Pigge, F. C. \& Coniglio, J. J. (2001). Curr. Org. Chem. 5, 757-784.
Sheldrick, G. M. (2000). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Wang, F. Y., Chen, H. M., Parkinson, J. A., del Socorro Murdoch, P. \& Sadler, P. J. (2002). Inorg. Chem. 41, 4509-4523.

Winkhaus, G. \& Singer, H. (1967). J. Organomet. Chem. 7, 487-491.
Yan, H., Süss-Fink, G., Neels, A. \& Stoeckli-Evans, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4345-4350.

